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Abstract

We study the coisotropic subgroup structure of standardSLq(2, R) and the corresponding
embeddable quantum homogeneous spaces. While the subgroupsS1 andR+ survive undeformed in
the quantization as coalgebras, we show thatR is deformed to a family of quantum coisotropic sub-
groups whose coalgebra cannot be extended to an Hopf algebra. We explicitly describe the quantum
homogeneous spaces and their double cosets. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantum groups are a natural framework for defining principal bundles and homogeneous
spaces in non-commutative geometry. These deeply connected notions have been largely
investigated in the recent years and have had a parallel development. The first and best
known example of quantum homogeneous spaces is provided by quantum spheres [12]: this
is a family of embeddableSUq(2)-comodule algebras. The identification of an appropriate
quotient procedure has been more elaborated. Indeed, once one has aquantum subgroup, i.e.
a quotient by a Hopf ideal, a quantum homogeneous space can be defined as the subalgebra of
coinvariant elements. Nevertheless, it is well known (see e.g. [8,13]) that in the quantum case
the limited number of subgroups that survive is not enough to obtain all the homogeneous
spaces. The concept of quantum subgroup must be generalized to that ofcoisotropic quantum
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subgroup, allowing to recover from a quotient type procedure all known families of quantum
embeddable homogeneous spaces. Coisotropic subgroups are quotient by a coideal, right
(or left) ideal so that they inherit only the coalgebra structure while the algebra is weakened
to a right (or left) module. The name coisotropic that we use emphasizes the semiclassical
properties: indeed they are quantizations of coisotropic subgroups of Poisson–Lie groups
[6].

In a parallel way quantum principal bundles, together with the theory of connections,
were studied in [3] with a Hopf algebra on the fibre. This construction is known in Hopf
algebra theory as Galois extension (see e.g. [10]). More general quantum structure groups
were considered first in [2] and then in [4]: the total space is an algebra and the structure
group is just a coalgebra. According to this definition embeddable homogeneous spaces
realize quantum principal bundles with coisotropic subgroups as structure groups.

This construction has been studied for quantum spheres in [2] and for quantum planes and
cylinders in [6]. In both cases it comes out that the quantum stability subgroups, which by
construction are only coalgebras, can be completed with an algebra structure thus obtaining
the undeformed Hopf algebra of the classical stability subgroup.

We show in this paper that the subgroup structure of standardSLq(2, R), displays a
pure quantum behaviour. Besides the deformation of the upper complex plane and the
one sheeted hyperboloid, whose stability subgroups remain classical, we exhibit a family
of homogeneous spaces whose stability subgroups are only coalgebras not supporting a
compatible Hopf algebra.

The real structure, that was not considered in the previous works, plays here a fundamental
role. Although the involution does not descend to the coisotropic subgroup, nevertheless
the real structure survives by asking that the defining ideal isτ = ∗ ◦ S invariant [1].
Indeed, according to this structure, we are able to describe the different nature of coisotropic
subgroups ofSLq(2, R) with respect to those defined bySUq(2) fibrations over quantum-
spheres.

2. Summary of the results

In this section, we describe the results of the paper. Let us first recall the classical case.
A geometrical picture can be given by considering the adjoint action ofSL(2, R) on its
Lie algebrasl(2, R). The Killing form, invariant with respect to the adjoint action, has
signature(1, 2). After the identification ofsl(2, R) with R3, one obtains that the group
action preserves all quadratic submanifolds of the formx2 − y2 − z2 = Θ with Θ ∈ R.
Excluding the trivial orbit(0, 0, 0) and studying the isotropy subgroups of points of such
quadrics, one can distinguish three essentially different cases of homogeneous spaces
1. WhenΘ < 0 one gets one-sheeted hyperboloids; the corresponding isotropy subgroups

are all conjugated to

A =
{(

λ 0
0 λ−1

)
, λ ∈ R+

}
.
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These subgroups can also be characterized as those containing hyperbolic matrices, i.e.
matricesM such that|tr M| > 2. We will call such subgroups to be ofR+-type.

2. WhenΘ > 0 one gets two sheeted hyperboloids. The connected components of the
isotropy subgroups are conjugated to

K =
{(

cosθ sinθ

− sinθ cosθ

)
, θ ∈ [0, 2π)

}
.

These subgroups contain elliptic matrices, i.e. matricesM such that|tr M| < 2. We will
call such subgroups to be ofS1-type.

3. Finally, whenΘ = 0 one gets the light-cone minus its vertex. The connected components
of the isotropy subgroups are conjugated to

N =
{(

1 b

0 1

)
, b ∈ R

}
.

All of its elements are parabolic, i.e. matricesM such that|tr M| = 2. We will call such
subgroups to be ofR-type.

We remark that another presentation of the homogeneous spaces corresponding toS1 is
the upper complex plane with the homographic action. All one-dimensional subgroups of
SL(2, R) belong to one of the conjugacy classes of the isotropy subgroups above. The rep-
resentatives we have chosen are those appearing in the Iwasawa decompositionSL(2, R) =
KAN.

Consider now the quantum situation. Subgroups ofS1 andR+ type remain undeformed
as coalgebras; the subgroups ofR type are deformed to a family of coisotropic quantum sub-
groups whose coalgebras are all isomorphic to a coalgebraRq which cannot be completed
to a Hopf algebra. The corresponding homogeneous spaces are the analogues of the excep-
tional quantum-spheres parametrized in [12] byc = c(n). Contrary to these exceptional
quantum-spheres the spaces of our special series have classical points so that they are em-
beddable. In Proposition 10, we give a detailed analysis ofRq showing that it is not cosemi-
simple. In this way, we have a quantization of any classical connected one-dimensional
subgroup ofSL(2, R). The general problem of classifying all the coisotropic subgroups,
including the discrete ones, is a much more delicate task.

We construct the embeddable quantum homogeneous spaces as the spaces of coinvariant
elements and we recover the results given in [9] starting from the semiclassical covariant
Poisson structure. By the use of coisotropic subgroups, we are able to define the double
cosets and give their explicit description.

3. Coisotropic quantum subgroups and homogeneous spaces

In this section, we recall the definition and the main properties of real coisotropic quantum
subgroups as well as their associated homogeneous spaces (see [1,6] for more details). We
then discuss the equivalence of coisotropic subgroups determined by the characters of the
whole Hopf algebra.
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Given a real quantum group(A, ∗), we will call real coisotropic quantum right(left)
subgroup(K, τK) a coalgebra, right (left)A-moduleK such that
1. there exists a surjective linear mapπ : A→ K, which is a morphism of coalgebras and

of A-modules (whereA is considered as a module on itself via multiplication);
2. there exists an antilinear mapτK : K→ K such thatτK ◦ π = π ◦ τ , whereτ = ∗ ◦ S.
A ∗-Hopf algebraS is said to be a real quantum subgroup ofA if there exists a∗-Hopf algebra
epimorphismπ : A → S; evidently this is a particular coisotropic subgroup. We remark
that a coisotropic quantum subgroup is not in general a∗-coalgebra but it has onlyτK defined
on it. It is easy to verify that if a coisotropic quantum subgroup is also a∗-coalgebra and
π ◦∗ = ∗◦π , it is then possible to complete the structure so as to have a quantum subgroup.

Coisotropic quantum subgroups are characterized by the following proposition.

Proposition 1. There exists a bijective correspondence between coisotropic quantum right
(left) subgroups andτ -invariant two-sided coideals, right(left) ideals inA.

A ∗-algebraB is said to be an embeddable quantum left (right)A-homogeneous space if
there exists a coactionδ : B → B ⊗ A, (δ : B → A ⊗ B) and an injective morphism of
∗-algebrasi : B → A such that∆ ◦ i = (i ⊗ id) ◦ δ (∆ ◦ i = (id ⊗ i) ◦ δ).

A canonical construction for embeddable quantum homogeneous spaces can now be
provided.

Proposition 2. If (K, τK) is a right coisotropic quantum subgroup of(A, ∗) then

Bπ = {a ∈ A|(id ⊗ π)1a = a ⊗ π(1)}
is a right embeddable quantum homogeneous space.

If (K, τK) is a left coisotropic quantum subgroup of(A, ∗) then

Bπ = {a ∈ A|(π ⊗ id)1a = π(1) ⊗ a}
is a left embeddable quantum homogeneous space.

The correspondence between coisotropic quantum subgroups and embeddable quantum
homogeneous spaces is bijective only provided some faithful flatness conditions on the
module and comodule structures are satisfied (see [11] for more details).

Let g : A → C be a character, i.e. a∗-homomorphism ofA in C, let then Adgx =∑
(x)g(S(x(1)))g(x(3))x(2). The following proposition is a straightforward consequence of

the fact that Adg is an algebra and coalgebra isomorphism and commutes withτ .

Proposition 3. Letr : A→ K be the projection that defines the right coisotropic subgroup
K. Let alsorg[x] = r[Ad−1

g x], x ∈ A. Then, Kerrg = Adg Ker r is a τ invariant right
ideal and two sided coideal and determines the coisotropic subgroupKg.The corresponding
homogeneous spaceBrg = AdgB

r is isomorphic toBr as left comodule algebra.

We remark that the two quotient structuresK andKg are isomorphic as coalgebras but not
as right modules. Indeed,rg[x f ] = rg[x]Adgf .
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4. Coisotropic subgroups

Let q be a complex number of modulus one, not a root of unity. The function algebra
on the quantum groupSLq(2, R) is defined as the unital∗-algebra generated by four real
elementsa, b, c, d with relations

ab= q ba, ac = q ca, bc = cb, bd = q db,

cd= q dc, da− q−1 bc = 1 = ad− q bc. (1)

The Hopf algebra structure, in matrix form, is given by

∆

(
a b

c d

)
=

(
a b

c d

)
⊗

(
a b

c d

)
,

ε

(
a b

c d

)
=

(
1 0
0 1

)
, S

(
a b

c d

)
=

(
d −q−1b

−qc a

)
. (2)

A direct application of diamond lemma leads to

Proposition 4. The elements

{arbsct , bsctdr , r, s, t ∈ N} (3)

form a basis of SLq(2, R) as a complex vector space.

It is straightforward to verify that all the characters ofSLq(2, R) are of the form

gα

(
a b

c d

)
=

(
α 0
0 1/α

)
(4)

with α ∈ R\{0}.
We now describe the family of quantum coisotropic subgroups ofSLq(2, R).

Proposition 5. LetCµν be the linear subspace of SLq(2, R) spanned by{(a−d+2q1/2µb),

(qνb + c)} with µ, ν ∈ R. Then, Cµν is a τ -invariant two sided coideal in SLq(2, R).

Proof. From the homomorphism propertyτ(ab) = τ(a)τ (b), theτ -invariance ofCµν is
proved by verifying that

τ(a − d + 2q1/2µb) = −(a − d + 2q1/2µb), τ (qνb + c) = −q−1(qνb + c).

From

ε(a − d) = ε(b) = ε(c) = 0,

∆(a − d + 2q1/2µb) = (a − d + 2q1/2µb) ⊗ (a + 2q1/2µb)

+(d − 2q1/2µb) ⊗ (a − d + 2q1/2µb)

+b ⊗ (qνb + c) − (qνb + c) ⊗ b,
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1(qνb + c) = (a + 2q1/2µb) ⊗ (qνb + c) + (qνb + c) ⊗ (d − 2q1/2µb)

−(a − d + 2q1/2µb) ⊗ c + c ⊗ (a − d + 2q1/2µb)

it follows thatCµν is a two-sided coideal. �

Let nowRµν = CµνSLq(2, R) andLµν = SLq(2, R)Cµν the right and left ideals gener-
ated byCµν ; we callKµν = SLq(2, R)/Rµν , µνK = SLq(2, R)/Lµν andrµν and`µν the
corresponding quotient morphisms. We denote by center dot (·) the action ofSLq(2, R) on
the quotients.

In the next section, we will study the coisotropic quantum subgroups defined by the right
projection.

Lemma 6. Letw0 = 1 and

wn = (a + q1/2χσ b) · · · (a + q |n|−1/2χσ b), n ∈ Z\{0},
whereσ = n/|n| and

χσ = µ + σ

√
µ2 − ν := µ + σ exp{1

4iπ(1 − sign(µ2 − ν))}
√

|µ2 − ν|.
Thenvn = rµν [wn] is group-like, τ(vn) = vn for µ2 < ν while τ(vn) = v−n for µ2 ≥ ν.

Proof. From the relationswn(a + q−n+1/2χ−b) = (a2 + νb2 + 2q−1/2µab)wn−1 for
n > 0 andwn(a +qn+1/2χ+b) = (a2+νb2+2q−1/2µab)wn+1 for n < 0 and the equality
rµν [a2 + νb2 + 2q−1/2µab] = rµν [1] we have

vn+1 = vn · (a + qn+1/2χ+b), vn−1 = vn · (a + q−n+1/2χ−b), n ∈ Z. (5)

We first prove, by induction, that the elementsvn are group-like. This is trivially true for
n = 0. Assume then1vn = vn ⊗ vn for n > 0. After some algebraic rearrangement,
making use of the induction hypothesis and the property

rµν [x] · c = −qνrµν [x] · b, x ∈ SLq(2, R), (6)

the equality1vn+1 = vn+1 ⊗ vn+1 is reduced to the following relation:

vn · d = vn · (a + (qn+(1/2)χ+ + q−n+(1/2)χ−)b), n ∈ Z, (7)

that can be proved again by induction. The results aboutτ are obtained using the same
procedure. The proof is similar forn < 0. �

Remark 7. Analogously the left quantum subgroup obtained as the image of`µν contains
the group-like elements̀µν [w̃n], wherew̃0 = 1 and

w̃n = (a + q |n|−(1/2)χσ b) · · · (a + q1/2χσ b), n ∈ Z\{0}. (8)

According to the structures contained in coisotropic subgroups different notions of equiv-
alence can be defined. In the following proposition we classify them as morphisms of
coalgebras and of modules and coalgebras.
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Proposition 8.
1. The subgroupKµν is isomorphic as a coalgebra toR+ if µ2 > ν. It is isomorphic toS1

if ν > 0 andµ/
√

ν = cosφµν < 1 for cos2φµν 6= cos2`φ, where` ∈ Z andq = eiφ .
The coalgebras corresponding to the special seriescos2φµν = cos2`φ are mutually
isomorphic.

2. Let ν > 0, µ/
√

ν = cosφµν ≤ 1 andµn/
√

ν = cos(φµν + nφ). Then, Kµν andKµnν

are isomorphic as coalgebras and modules.

Proof. We first prove the part (2) of the proposition. From (6) and (7) and the definition
of Cµnν it is straightforward to derive that AnnKµν

(vn) = Ker(rµnν). From (5), we see that
v0 ∈ vn ·SLq(2, R) for eachn ∈ Z. SinceKµν is generated as a module byv0, we conclude
that

Kµν = vn · SLq(2, R) ' SLq(2, R)/AnnKµν
(vn) = SLq(2, R)/Ker(rµnν) = Kµnν.

The module morphismi : Kµν → Kµnν is defined byi(vn · a) = rµnν [a] and it is clearly
a coalgebra morphism.

We now prove the statement (1). Using Proposition 4 it is easy to show thatKµν is
spanned by elementsrµν [bs ] andrµν [abs ], s ∈ N. From (5), we get

q1/2(qnχ+ − q−nχ−)vn · b = vn+1 − vn−1,

(qnχ+ − q−nχ−)vn · a = qnχ+vn−1 − q−nχ−vn+1. (9)

Assuming cos2φµν 6= cos2`φ, namely(q`χ+ −q−`χ−) 6= 0 for ` ∈ Z, using a recurrence
procedure starting froms = 0, we find

rµν [bs ] =
s∑

k=0

Cs
k vs−2k, (10)

where

Cs
k = (−)kq−s/2 [s]q !

[k]q ![s − k]q !

s∏
i = 0

i 6= s − k

1

qi−kχ+ − q−i+kχ−
·

Here, we use the standard notation for theq-numbers andq-factorials. This proves, together
with rµν [abs ] = qsrµν [bs ] · a thatKµν is spanned by thevn with n ∈ Z. From Lemma 6,
we have that forµ2 > ν the subgroupKµν is isomorphic as real coalgebra toR+ and for
µ2 < ν to S1.

For each charactergα defined in (4), according to Proposition 2, the real coisotropic
quantum subgroup(Kµν)gα is generated byCµανα = AdgαCµν with µα = µ/α2 and
να = ν/α4. By observing that two subgroups of the special series can be connected by the
composition of the adjoint map and a morphism introduced in (2), we conclude that they
are isomorphic as coalgebras. �
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In the following, we give an explicit description of the coalgebra corresponding to the
special series cos2φµν = cos2`φ. By using the result of Proposition 8 (2), we can assume
` = 0, i.e.µ2 = ν. We denote such coalgebra asRq .

Lemma 9. For eachn ≥ 1 let

Xn =
n∑

i=1

(q − q−1)i−1 qi/2µi [n − 1]q !

[i]q [n − i]q !
vn−i · bi.

Then

1Xn = Xn ⊗ vn + vn ⊗ Xn, τ(Xn) = −Xn,

and{vn}n∈N ∪ {Xn}n≥1 is a linear basis forRq .

Proof. The coproduct and theτ of Xn can be calculated by induction observing thatX1 =
q1/2µv0·b and using the relationXn ·(q−na−qnd+2q1/2µb) = −[n+1]q(q−q−1)Xn+1.

Let us define, for eachk ≥ 0, a linear mappinggk : Rq → C such thatgk(vn) = δkn. If we
suppose that

∑
k(αkXk+βkvk) = 0, for someαk, βk and we apply(id⊗gk)∆, we obtain that

αkXk ∈ Span{vl}l∈N. SinceXn cannot be generated by group-like elements, we conclude
that αk = 0 and thusβk = 0. Therefore{vn, Xn} are linearly independent. Finally, we
observe thatRRRq = Span{v0·bk, v1·bk}k∈NNN . Asv1·bs ∈ Span{vk}k≤s+1⊕Span{v0·bk}k≤s−1

it is sufficient to show thatv0 · bs ∈ Span{vk, Xk}k≤s . This can be done by induction, when
the relation

q1/2µ(qn−q−n)Xn · b = [n + 1]q
[n]q

Xn+1 − [n − 1]q
[n]q

Xn−1 − q1/2µ
(qn + q−n)

[n]q
vn · b

is used. �

In the following proposition, we summarize the properties of the coalgebraRq .

Proposition 10.
1. If R(n)

q = Span{vn, Xn} for any fixedn > 0andR(0)
q = Span{v0}, thenRq = ⊕n∈NNNaR(n)

q

as a direct sum of cocommutative coalgebras.
2. The only simple subcoalgebras are those generated byvn, i.e.Rq is pointed. The corre-

sponding one-dimensional corepresentations are unitary.
3. There exists no Hopf algebra isomorphic toRq as coalgebra.

Proof. The point (1) is a direct consequence of Lemma 9.
Using Theorem (8.0.3) of [14], we have that each simple coalgebra must be contained

in R(n)
q for somen. It is clear that the only simple subcoalgebra ofR(n)

q is Span{vn}. This
proves the point (2).

Finally, let us suppose thatRq has a bialgebra structure and letvn0 = 1. By Theorem

(8.1.1) of [14] the irreducible componentR(n0)
q of vn0 must be a sub-bialgebra. It is not

difficult to see that the only two-dimensional bialgebra is generated by two group-like
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elements, so thatR(n0)
q must be one-dimensional, i.e.n0 = 0. By using Theorem (8.1.5)

of [14] if the irreducible component of the identity is one-dimensional thenRq must be
isomorphic as an algebra to Span{vn}n∈Na . This is not true and shows point (3). �

Remark 11 (Classical limit of the special series).Eq. (9) for µ2 = ν readsvn+1 − vn−1 =
(q−q−1)q1/2µ[n]qvn ·b. As a consequence, we have{v2n−v0, v2n+1−v1} ∈ (q−q−1)Rq ,
so that in the classical limit all the group-like elementsvn collapse intov0 or v1 according
to the parity of n.

5. Homogeneous spaces ofSLq(2, R)SLq(2, R)SLq(2, R) and double coset

Starting from a real coisotropic quantum subgroup one has a naturally defined real em-
beddable quantum homogeneous space

Brµν = {x ∈ SLq(2, R) : (id ⊗ rµν)1x = x ⊗ rµν [1]}.
Let

z1 = q−1/2(ac+ ν bd) + 2µbc, z2 = c2 + νd2 + 2µq−1/2cd,

z3 = a2 + νb2 + 2µq−1/2ab. (11)

By direct computation it can be verified thatzi are real elements with relations

z1z2 = q2z2z1, z1z3 = q−2z3z1, z3z2 = ν + q2z2
1 + 2µqz1 (12)

and coproducts

∆(z1) = (1 + (q + q−1)bc) ⊗ z1 + q−1/2bd⊗ z2 + q−1/2ac⊗ z3 + 2µbc⊗ 1,

∆(z2) = q−1/2(q + q−1)cd⊗ z1 + d2 ⊗ z2 + c2 ⊗ z3 + 2µq−1/2cd⊗ 1,

∆(z3) = q−1/2(q + q−1)ab⊗ z1 + b2 ⊗ z2 + a2 ⊗ z3 + 2µq−1/2ab⊗ 1. (13)

The following proposition can be proven according to the lines suggested in Proposition
5.4 of [2].

Proposition 12. The left comodule subalgebraBrµν is generated by{zi}i=1,2,3.

The characters ofBrµν are given byg(z1) = 0, g(z2) = αν, g(z3) = 1/α with
α ∈ R\{0}. Using the map(id ⊗ g) ◦ ∆, we see thatBrµν and Brµ′ν′ are isomorphic
as left comodule algebras ifµ′ = µ/α andν′ = ν/α2 with α ∈ R\{0}. We remark thatg
is a restriction of a character defined on the wholeSLq(2, R) only for α > 0.

Remark 13. In the classical limit the last of the relations(12)readsz3z2 = ν +z2
1 +2µz1;

posingz1 = z − µ, z2 = x + y, z3 = x − y we getx2 − y2 − z2 = ν − µ2. Therefore
Θ = ν − µ2 is the parameter, defined in Section1, that classifies the homogeneous spaces
of SL(2, R).
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For all µ, ν the irreducible corepresentations of the subgroup are one-dimensional and
defined byρj (1) = vj , wherej ∈ Z for R+, S1 andj ∈ N for Rq . We remark that they are
unitary only in the case ofS1 andRq .

Following the scheme of [1,7], we induce respectively right and left corepresentations of
the whole quantum groupSLq(2, R) on

B
rµν

j = {x ∈ SLq(2, R)|(id ⊗ rµν)1x = x ⊗ vj },
jB

`µν = {x ∈ SLq(2, R)|(`µν ⊗ id)1x = vj ⊗ x}.
The coaction map is simply the restriction of the coproduct to these spaces.

As (`µν ⊗ id)1 : B
rµν

j → Kµν ⊗B
rµν

j , we can also define the left and right corepresenta-

tionsjB
µν
k = kB

`µν ∩B
rµν

j . By direct computation, we can give the explicit characterization
of the double coset

oB
µν
o = Span{(z2 + νz3 − 2µz1)

n}n∈N.

SinceS1 andR+ are cosemisimple, we can apply Corollary 1.5 from [11]; we then have,
for the corresponding values ofµ andν, the following decomposition:

SLq(2, R) = ⊕
j∈Z

jB
`µν = ⊕

j∈Z
S(B

rµν

j ).

Furthermore,B
rµν

j (jB`µν ) is a finitely generated projectiveBrµν (B`µν )-module. This prop-

erty is usually rephrased by saying thatB
rµν

j (jB`µν ) is the space of sections of a quantum
line bundle on the quantum homogeneous space. The space further decomposes as

SLq(2, R) = ⊕
jk

jB
µν
k .

The study of these spaces will be given in a forthcoming paper (see [5] forB1 for the case
of the quantum spheres). We remark, however, that no conclusion can be drawn on vector
bundles in the case ofRq via Ref. [11].
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[3] T. Brzezínski, S. Majid, Quantum group gauge theory on quantum spaces, Commun. Math. Phys. 157 (1993)
591–638; Erratum 167 (1995) 235.
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