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Abstract

We study the coisotropic subgroup structure of standgiggd2, R) and the corresponding
embeddable quantum homogeneous spaces. While the sub§a@maR ;. survive undeformed in
the quantization as coalgebras, we show Ehat deformed to a family of quantum coisotropic sub-
groups whose coalgebra cannot be extended to an Hopf algebra. We explicitly describe the quantum
homogeneous spaces and their double cosets. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Quantum groups are a natural framework for defining principal bundles and homogeneous
spaces in non-commutative geometry. These deeply connected notions have been largely
investigated in the recent years and have had a parallel development. The first and best
known example of guantum homogeneous spaces is provided by quantum spheres [12]: this
is a family of embeddabl8U, (2)-comodule algebras. The identification of an appropriate
guotient procedure has been more elaborated. Indeed, once orgiaasiam subgroup.e.
aquotientby a Hopfideal, aquantum homogeneous space can be defined as the subalgebra of
coinvariant elements. Nevertheless, itis well known (see e.g. [8,13]) thatin the quantum case
the limited number of subgroups that survive is not enough to obtain all the homogeneous
spaces. The concept of quantum subgroup must be generalized tathigbdfopic quantum
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subgroupallowing to recover from a quotient type procedure all known families of quantum
embeddable homogeneous spaces. Coisotropic subgroups are quotient by a coideal, right
(or left) ideal so that they inherit only the coalgebra structure while the algebra is weakened
to a right (or left) module. The name coisotropic that we use emphasizes the semiclassical
properties: indeed they are quantizations of coisotropic subgroups of Poisson-Lie groups
[6].

In a parallel way quantum principal bundles, together with the theory of connections,
were studied in [3] with a Hopf algebra on the fibre. This construction is known in Hopf
algebra theory as Galois extension (see e.g. [10]). More general quantum structure groups
were considered first in [2] and then in [4]: the total space is an algebra and the structure
group is just a coalgebra. According to this definition embeddable homogeneous spaces
realize quantum principal bundles with coisotropic subgroups as structure groups.

This construction has been studied for quantum spheres in [2] and for quantum planes and
cylinders in [6]. In both cases it comes out that the quantum stability subgroups, which by
construction are only coalgebras, can be completed with an algebra structure thus obtaining
the undeformed Hopf algebra of the classical stability subgroup.

We show in this paper that the subgroup structure of stan8&y@®, R), displays a
pure quantum behaviour. Besides the deformation of the upper complex plane and the
one sheeted hyperboloid, whose stability subgroups remain classical, we exhibit a family
of homogeneous spaces whose stability subgroups are only coalgebras not supporting a
compatible Hopf algebra.

The real structure, that was not considered in the previous works, plays here afundamental
role. Although the involution does not descend to the coisotropic subgroup, nevertheless
the real structure survives by asking that the defining ideal is % o S invariant [1].
Indeed, according to this structure, we are able to describe the different nature of coisotropic
subgroups oBL, (2, R) with respect to those defined I8, (2) fibrations over quantum-
spheres.

2. Summary of the results

In this section, we describe the results of the paper. Let us first recall the classical case.
A geometrical picture can be given by considering the adjoint actioBL&2, R) on its
Lie algebrasl(2, R). The Killing form, invariant with respect to the adjoint action, has
signature(l, 2). After the identification ofsl(2, R) with R3, one obtains that the group
action preserves all quadratic submanifolds of the fefm- y2 — z2 = © with ® € R.
Excluding the trivial orbit(0, 0, 0) and studying the isotropy subgroups of points of such
guadrics, one can distinguish three essentially different cases of homogeneous spaces
1. When® < 0 one gets one-sheeted hyperboloids; the corresponding isotropy subgroups
are all conjugated to

a=|(3 %) rer)



192 F. Bonechi et al./ Journal of Geometry and Physics 37 (2001) 190-200

These subgroups can also be characterized as those containing hyperbolic matrices, i.e.
matricesM such thaftr M| > 2. We will call such subgroups to be Bf, -type.

2. When® > 0 one gets two sheeted hyperboloids. The connected components of the
isotropy subgroups are conjugated to

K:{( cosf Sine),@e[O,er)}.

—sind cosH

These subgroups contain elliptic matrices, i.e. matridesuch thattr M| < 2. We will
call such subgroups to be 6t-type.

3. Finally, when® = 0 one gets the light-cone minus its vertex. The connected components
of the isotropy subgroups are conjugated to

|

All of its elements are parabolic, i.e. matricessuch thattr M| = 2. We will call such
subgroups to be dR-type.
We remark that another presentation of the homogeneous spaces corresporgling to
the upper complex plane with the homographic action. All one-dimensional subgroups of
SL(2, R) belong to one of the conjugacy classes of the isotropy subgroups above. The rep-
resentatives we have chosen are those appearing in the lwasawa decompBo&ti®) =
KAN.

Consider now the quantum situation. SubgroupS'aindR_, type remain undeformed
as coalgebras; the subgroup&di/pe are deformed to a family of coisotropic quantum sub-
groups whose coalgebras are all isomorphic to a coalgebmhich cannot be completed
to a Hopf algebra. The corresponding homogeneous spaces are the analogues of the excep-
tional quantum-spheres parametrized in [12]cby c(n). Contrary to these exceptional
guantum-spheres the spaces of our special series have classical points so that they are em-
beddable. In Proposition 10, we give a detailed analysig,afhowing that it is not cosemi-
simple. In this way, we have a quantization of any classical connected one-dimensional
subgroup ofSL(2, R). The general problem of classifying all the coisotropic subgroups,
including the discrete ones, is a much more delicate task.

We construct the embeddable quantum homogeneous spaces as the spaces of coinvariant
elements and we recover the results given in [9] starting from the semiclassical covariant
Poisson structure. By the use of coisotropic subgroups, we are able to define the double
cosets and give their explicit description.

3. Coisotropic quantum subgroups and homogeneous spaces

Inthis section, we recall the definition and the main properties of real coisotropic quantum
subgroups as well as their associated homogeneous spaces (see [1,6] for more details). We
then discuss the equivalence of coisotropic subgroups determined by the characters of the
whole Hopf algebra.
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Given a real quantum grouf4, %), we will call real coisotropic quantum righgleft)
subgroup(KC, i) a coalgebra, right (leftd-moduleX such that
1. there exists a surjective linear map A — K, which is a morphism of coalgebras and
of A-modules (whered is considered as a module on itself via multiplication);
2. there exists an antilinear map : K — K such thatx or = 7 o 7, wherer = %o S.
A x-HopfalgebraS is said to be a real quantum subgrouplifthere exists a-Hopfalgebra
epimorphismr : A — S; evidently this is a particular coisotropic subgroup. We remark
that a coisotropic quantum subgroup is not in genefrataalgebra butit has onky: defined
on it. It is easy to verify that if a coisotropic quantum subgroup is alsecaalgebra and
7w o% = %o, itis then possible to complete the structure so as to have a quantum subgroup.
Coisotropic quantum subgroups are characterized by the following proposition.

Proposition 1. There exists a bijective correspondence between coisotropic quantum right
(left) subgroups and-invariant two-sided coideals, riglfteft) ideals in.A.

A x-algebraB is said to be an embeddable quantum left (rigthomogeneous space if
there exists a coactioch: B - B® A, (§ : B - A ® B) and an injective morphism of
x-algebras : B — Asuchthatdoi = (i ® id) 0§ (Aoci = (Id®i) 0 6).

A canonical construction for embeddable quantum homogeneous spaces can now be
provided.

Proposition 2. If (IC, 7)) is a right coisotropic quantum subgroup @4, *) then
B" ={ac Al(ld®@nm)Aa =a ® 7 (1)}

is a right embeddable quantum homogeneous space
If (IC, txc) is a left coisotropic quantum subgroup @4, *) then

By ={a € Al(r ®id)Aa = 7(1) ® a}

is a left embeddable quantum homogeneous space

The correspondence between coisotropic quantum subgroups and embeddable quantum
homogeneous spaces is bijective only provided some faithful flatness conditions on the
module and comodule structures are satisfied (see [11] for more details).

Letg : A — C be a character, i.e. @homomorphism of4 in C, let then Adx =
Z(x)g(S(X(l)))g(X(3))x(2). The following proposition is a straightforward consequence of
the fact that Ad is an algebra and coalgebra isomorphism and commuteswith

Proposition 3. Letr : A — K be the projection that defines the right coisotropic subgroup
K. Let alsorg[x] = r[Adg_lx], x € A. Then Kerr, = Ad, Kerr is a t invariant right
ideal and two sided coideal and determines the coisotropic subdé@uphe corresponding
homogeneous spa@s = Ad,B" is isomorphic toB” as left comodule algebra

We remark that the two quotient structu#ésind/C, are isomorphic as coalgebras but not
as right modules. Indeed,[x f] = r,[x]Ad, f.
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4. Coisotropic subgroups

Let g be a complex number of modulus one, not a root of unity. The function algebra
on the quantum grouL, (2, R) is defined as the unital-algebra generated by four real
elements:, b, ¢, d with relations

ab=gba, ac=gqgca bc=cb bd=gdb,
cd=gdc, da—g 'bc=1=ad-gbc 1)

The Hopf algebra structure, in matrix form, is given by
a b a b a b
A(c d>_<c d)®<c d)’
a by (1 0 a b\ _ (d —q¢%
(0062 s(ta)-(% ") @

A direct application of diamond lemma leads to

Proposition 4. The elements
{a"b*c’,b°c'd", r,s,t € N} (3)

form a basis of SL(2, R) as a complex vector space

Itis straightforward to verify that all the charactersSif, (2, R) are of the form

a b o 0
g“(c d>:(0 1/a) )
with o € R\{0}.

We now describe the family of quantum coisotropic subgrouigf2, R).

Proposition 5. LetC,, be the linear subspace of 52, R) spanned by(a —d+2qY2ub),
(qvb + o)} with u, v € R. Then C,,, is at-invariant two sided coideal in SI2, R).

Proof. From the homomorphism propertyab) = (a)z(b), the t-invariance ofC,,, is
proved by verifying that

t(a —d + 2qY?ub) = —(a — d + 2¢*?ub), T(qub +¢) = —q L (qvb + ).
From

gla—d)=¢e) =¢(c) =0,

Ala —d + 2611/2,ub) =(a—d+ qu/zy,b) ® (a + 2ql/2y,b)
+(d — 2qM?pb) ® (a — d + 2qM?pb)
+b® (qvb +c¢) — (qvb+ ) ® b,
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A(gvb + ¢) = (a + 2¢Y%1ub) ® (qvb + ¢) + (qvb + ¢) ® (d — 2qY*ub)
—(a—d+2¢qY%ub) @ c+ ¢ ® (a — d + 2¢*?ub)
it follows thatC,,, is a two-sided coideal. O
LetnowR,, = C,,SL;(2,R) andL,,, = SL,(2, R)C,, the right and left ideals gener-

ated byC,,; we callK,, = SL,(2,R)/R v, ,wK = SL,(2,R)/L,,, andr,, and¢,, the
corresponding quotient morphisms. We denote by center dibtg( action ofSL, (2, R) on
the quotients.

In the next section, we will study the coisotropic quantum subgroups defined by the right
projection.

Lemma6. Letwg = 1 and
wy = (@+q"%x b) - (@+q""2x5b), nez\(0),
whereo = n/|n| and
Yo = m+0o\u?—vi=p+oexpFiz(l—signu® — v)}y/Iu? - vl.
Thenv, = ry,[w,] is group-likg T (v,) = v, for w? < vwhilet(v,) = v_, for u2 > v.
Proof. From the relationsv, (a + ¢ "tY2x_b) = (a? + vb? + 2¢~Y2pabyw,_1 for

n > 0andw,(a+q" ™2y, b) = (a®+vb2+2¢~ Y2 pabyw, 1 forn < 0and the equality
ruvla® + vb? + 2¢=Y2pal] = r,,[1] we have

Uil = Un - @4+ q"Pxb),  veii=uv-(@4+q "4 b), nez. (5)

We first prove, by induction, that the elemensare group-like. This is trivially true for
n = 0. Assume themv, = v, ® v, for n > 0. After some algebraic rearrangement,
making use of the induction hypothesis and the property

rulx] - ¢ = —qvrylx] b, x € SL(2,R), (6)
the equalityAv, 11 = v,+1 ® v,41 IS reduced to the following relation:
vn-d =0, @+ (@Y + gDy )by, nez, (7)

that can be proved again by induction. The results aboarte obtained using the same
procedure. The proof is similar far < 0. O

Remark 7. Analogously the left quantum subgroup obtained as the imagg, afontains
the group-like elements,,[w,], wherewo = 1 and
By = (a+q"" YD xob) - (a+q"%xsb),  n€Z\{(0}. (8)
According to the structures contained in coisotropic subgroups different notions of equiv-

alence can be defined. In the following proposition we classify them as morphisms of
coalgebras and of modules and coalgebras.
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Proposition 8.

1. The subgroug,,, is isomorphic as a coalgebra ®. if w? > v. Itis isomorphic toSt
if v>0andu/y/v = cosg,, < 1for coSe,, # coSts, wheret € Z andg = €.
The coalgebras corresponding to the special selcie§¢w = cogl¢ are mutually
isomorphic

2. Letv > 0, u//v = cosp,, < landu,//v = cod¢,, + np). Then K, andC,,,,
are isomorphic as coalgebras and modules

Proof. We first prove the part (2) of the proposition. From (6) and (7) and the definition
of C,, itis straightforward to derive that Ang), (vn) = Ker(ry,y). From (5), we see that

vo € vy - Sk, (2, R) for eachn € Z. SinceC,,, is generated as a module tyy, we conclude
that

Kuv = va - Sy (2, R) = Sy (2, R)/Anni,, (un) = Sl (2, R)/Ker(ry,v) = K-

The module morphism: K., — K, is defined byi (v, - a) = ry,v[a] and it is clearly
a coalgebra morphism.
We now prove the statement (1). Using Proposition 4 it is easy to showkihais
spanned by elementg, [b*] andr,,[ab’], s € N. From (5), we get
Cll/z(anJr - 617"X—)Un b =Vyq1— V1,

G@"x+—q "XV -a=q"x4Vn-1—q " X=Vp41. 9)

Assuming co%@w + coslg, namely(gx, —gtx_) # 0for¢ € Z, using a recurrence
procedure starting from = 0, we find

s
ruu[bs] = Z C]i Us—2k» (10)
k=0
where
) . [s]4! u 1
Cl = (g™ Py - Eo
¢ [k]g![s — k]! H q X — g X

i#s—k

Here, we use the standard notation forgheumbers ang-factorials. This proves, together
with r, [ab’] = ¢°r,,[D°] - a that/C,,, is spanned by the, with n € Z. From Lemma 6,
we have that fop? > v the subgrouiK,,, is isomorphic as real coalgebrafy. and for
u? < vtoS

For each characteyf, defined in (4), according to Proposition 2, the real coisotropic
quantum subgroupkC,.,),, is generated by,,,, = Adg,Cyu» With 1y = w/a? and
ve = v/a’. By observing that two subgroups of the special series can be connected by the
composition of the adjoint map and a morphism introduced in (2), we conclude that they
are isomorphic as coalgebras. O
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In the following, we give an explicit description of the coalgebra corresponding to the
special series c6$w = co$l¢. By using the result of Proposition 8 (2), we can assume
¢ =0, i.e.u? = v. We denote such coalgebraRg.

Lemma 9. For eachn > 1let

n

@ —a D TP I - 1!
Xn = Z [i1g[n —i]4!

VUp—i* b'.
i=1

Then
AXy =X Quy + v, @ Xy, T(Xy) = — Xy,

and{v, }neNn U {X,}s>1is alinear basis folR,,.

Proof. The coproduct and theof X,, can be calculated by induction observing that=
q*?pvo-b and using the relatiol, - (¢ "a—q"d +2q*2ub) = —[n+1],(g —¢ H Xn41.
Letus define, for each > 0, alinear mapping; : R, — Csuchthagy (v,) = dkn. If we
supposethat, (ax X+ Brvr) = 0, for somey,, fr and we applyid®gx) A, we obtain that
ax X € Sparv; }ien. SinceX,, cannot be generated by group-like elements, we conclude
thatay = 0 and thusB; = 0. Therefore{v,, X, } are linearly independent. Finally, we
observethaR, = Sparfvg-b*, v1-b* lyen. Asv1-b* € Sparfvg bk<s+1®Sparvo-b¥ <1
it is sufficient to show thaiig - b* € Spar{vk, X« }r<s. This can be done by induction, when
the relation

[n + 1]q _ [n — 1]q 12 (" +q™") )
[n]q n+1 [n]q Xn-1—q7' [n]q Uy - b

is used. O

q"?uq"—q "X, b=

In the following proposition, we summarize the properties of the coalgepra

Proposition 10.

1. If R((I”) = Sparv,, X,}foranyfixed: > OandRéo) = Spar{vg}, thenR, = eaneNaRfI”)
as a direct sum of cocommutative coalgebras

2. The only simple subcoalgebras are those generatag Jye. R, is pointed. The corre-
sponding one-dimensional corepresentations are unitary

3. There exists no Hopf algebra isomorphicRg as coalgebra

Proof. The point (1) is a direct consequence of Lemma 9.

Using Theorem (8.0.3) of [14], we have that each simple coalgebra must be contained
in RY" for somen. It is clear that the only simple subcoalgebraRf’ is Sparv,}. This
proves the point (2).

Finally, let us suppose th&, has a bialgebra structure and igf = 1. By Theorem
(8.1.1) of [14] the irreducible componeRlé”O) of v,, must be a sub-bialgebra. It is not
difficult to see that the only two-dimensional bialgebra is generated by two group-like
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elements, so thaR,(I”O) must be one-dimensional, i.eg = 0. By using Theorem (8.1.5)
of [14] if the irreducible component of the identity is one-dimensional tRgrmust be
isomorphic as an algebra to Sgag},cn.. This is not true and shows point (3). O

Remark 11 (Classical limit of the special seriesEq. (9)for u2 = v readsv, 41 — vy—1 =
(g —qHgY?uln] v, -b. As aconsequence, we hdwe, —vo, v2,+1—v1} € (—g R,
so that in the classical limit all the group-like elemengscollapse intovg or v1 according
to the parity of n

5. Homogeneous spaces 8l4(2, R) and double coset
Starting from a real coisotropic quantum subgroup one has a naturally defined real em-
beddable quantum homogeneous space
B = {x € SI,(2,R) : (iId @ rpy) Ax = x @ r;[1]}.
Let
z1=q Y?(ac+ v bd) + 2ubc, 22 = ¢® + vd? + 2uq~Y2cd,
z3=a®+ vb® + 2uqY?ab. (12)
By direct computation it can be verified thatare real elements with relations
2122 = %2221, 2123 = ¢ 22321, 2322 = v +q%2f + 2u0qz (12)
and coproducts
Az) =1+ @+ ¢ Hbo @ z14 ¢ Y?bd® 2o + g %ac® z3 + 2ubc® 1,

Az)=q V(g + g Hed®zu +d?> @22+ P ® 23+ 2uqg YPcd® 1,
Azz)=q¢ Y?(g+q Hab®z1+ b*> ® 20 + a®° @ 23+ 2ug Y?ab® 1. (13)

The following proposition can be proven according to the lines suggested in Proposition
5.4 of [2].

Proposition 12. The left comodule subalgeb®» is generated byz;};—1.2 3.

The characters oB’# are given byg(z1) = 0, g(z2) = av, g(z3) = 1/a with
a € R\{0}. Using the map(id ® g) o A, we see thatB"» and B"»+ are isomorphic
as left comodule algebrasjif = /o andv’ = v/a? with o € R\{0}. We remark thag
is a restriction of a character defined on the willg(2, R) only fora > 0.

Remark 13. Inthe classical limit the last of the relatioif$2) readszzzo = v+ zf +2uz1;
posingzy = z — i, 22 = x + v, 23 = x — y we getx? — y2 — z2 = v — 2. Therefore

® = v — u?is the parameter, defined in Sectibsthat classifies the homogeneous spaces
of SL(2, R).
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For all , v the irreducible corepresentations of the subgroup are one-dimensional and
defined byp; (1) = v;, wherej € Z for Ry, Stand; e N for R,. We remark that they are
unitary only in the case 8! andRy,.

Following the scheme of [1,7], we induce respectively right and left corepresentations of
the whole quantum groupl, (2, R) on

B;‘” = {x € SLy(2, R)|(id ® ryy) Ax = x @ v},
B ={x € SL(2, R)|(¢yy @ Id)Ax = v; ® x}.

The coaction map is simply the restriction of the coproduct to these spaces.

As (£, ®id)A : B;“” - Kuw® B;’” , we can also define the left and right corepresenta-
tions; B} = (B mB;“” . By direct computation, we can give the explicit characterization
of the double coset

oBl" = Spar{(z2 + vzz — 21421)" }ueN.

SinceS! andR . are cosemisimple, we can apply Corollary 1.5 from [11]; we then have,
for the corresponding values pfandv, the following decomposition:

SL(2,R) = @ ;B = @ S(B").
jez jez

FurthermoreB;“” (j B')is afinitely generated projective/» (Be,,)-module. This prop-
erty is usually rephrased by saying tﬂﬁ;t‘“ (.,B@;w) is the space of sections of a quantum
line bundle on the quantum homogeneous space. The space further decomposes as

J

The study of these spaces will be given in a forthcoming paper (see [BLffor the case
of the quantum spheres). We remark, however, that no conclusion can be drawn on vector
bundles in the case &, via Ref. [11].
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